
Download free eBooks at bookboon.com

Java: Classes in Java Applications

7

Using the Java Application Programming Interface

1. Using the Java Application Programming
Interface

Chapter One takes examples from the Java Application Programming Interface (API) and the themed
application in order to emphasise the critical importance of documentation. The examples are used to
show how documentation is organised in the API and how it is inserted into developer’s code.

1.1 Documentation in Developer-Written Java Classes

Previous chapters include a number of examples of classes (or partial classes) from the themed application,
the main purpose of which is to illustrate programming concepts. It should not have escaped the notice of
the reader that these examples often include material other than Java statements, usually in a non-bold font.
The inclusion of such material raises a question: what is the purpose of documentation is a class definition?

Perhaps one way to address this question is to consider figures 1.1 and 1.2 below.

Source: http://www.cvr-it.com/PM_Jokes.htm

Figure 1.1 A view of an application as explained by the users

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

8

Using the Java Application Programming Interface

Source: http://www.cvr-it.com/PM_Jokes.htm

Figure 1.2 How the programme was documented

While it is obvious that the images are meant to be amusing, they make a serious point: there is nothing

worse than trying to maintain code written by someone else if there is little or no documentation.

Documentation is an integral part of a Java class in that it is used, inter alia, to explain the purpose of
members of the class (to the development team) and show consistency with the class diagram.

1.1.1 Documentation in the Themed Application

The class diagrams of two of the classes of the themed application are shown in the figure on the
next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

9

Using the Java Application Programming Interface

Figure 1.3 The Member and MembershipCard classes of the themed application

The classes are related by a ‘has a’ relationship, as shown in the next figure.

Figure 1.4 Each Member ‘has a’ MembershipCard

The source code for the Member class follows next. Some of the Java statements, white space and single-
line comments are omitted for the sake of brevity so that the learner can concentrate on Java
documentation, rather than on the logic of the code. Documentation blocks are displayed in a bold font.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

10

Using the Java Application Programming Interface

/**

 * The purpose of the Member class is … < to be completed by the developer >.
 * @author David M. Etheridge.
 * @version 1.0, dated 29 October 2008.
 */

public class Member {
 private String firstName;
 private String lastName;
 private String userName;
 private String password;
 private int membershipNumber;
 private String noOfCards;
 private MembershipCard card;

/**
 * This constructor is used to initalise the first four attributes.
 * @param fName The member's first name.
 * @param lName The member's last name.
 * @param uName The member's user name.
 * @param pWord The member's password.
 */

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Java: Classes in Java Applications

11

Using the Java Application Programming Interface

public Member(String fName, String lName, String uName, String pWord) {
 firstName = fName;
 lastName = lName;
 userName = uName;
 password = pWord;

 } // End of constructor.

/**
 * Accessor for the attribute firstName.
 * @return firstName The value of the attribute firstName.
 */
 public String getFirstName() {
 return firstName;
 } // End of definition of getFirstName.

/**
 * Accessor for the attribute lstName.
 * @return lastName The value of the attribute lastName.
 */
 public String getLastName() {
 return lastName;
 } // End of definition of getLastName.

/**
 * Accessor for the attribute userName.
 * @return userName The value of the attribute userName.
 */
 public String getUserName() {
 return username;
 } // End of definition of getUserName.

/**
 * Accessor for the attribute password.
 * @return password The value of the attribute password.
 */
 public String getPassword() {
 return password;
 } // End of definition of getPassword.

/**
 * Accrssor for the attribute membershipNumber.
 * @return membershipNumber The value of the attribute
 * membershipNumber.
 */

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

12

Using the Java Application Programming Interface

 public int getMembershipNumber() {
 return membershipNumber;
 } // End of definition of getMembershipNumber.

/**
 * Accessor for the attribute noOfCards.
 * @return noOfCards The value of the attribute noOfCards.
 */
 public String getNoOfCards() {
 return noOfCards;
 } // End of definition of getNoOfCards.

/**
 * Mutator for the attribute card.
 * @param card The member's membership card.
 */
 public void setCard(MembershipCard card) {
 this.card = card;
 } // End of setCard.

/**
 * Accessor for the attribute card.
 * @return card The member's membership card.
 */
 public MembershipCard getCard() {
 return card;
 } // End of setCard.

} // End of class definition of Member.

Comments in the source code that are placed between /** and */ are known as documentation comments

and can be used to generate documentation about classes automatically. Comments that are tagged with
‘@’ have a specific meaning in that they are used to refer to elements such as the programme’s author,
parameters and return values.

The (similarly simplified) class definition of the MembershipCard class follows on the next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

13

Using the Java Application Programming Interface

/**
 * The purpose of the class MembershipCard is …
 * @author David M. Etheridge.
 * @version 1.0, dated 29 October 2008.
 */

public class MembershipCard {

 private int noOnLoan;
 private int maxOnLoan;

 /**
 * This constructor is used to initalis the maxOnLoan attribute. *
 * @param max The maximum number of items permitted to be on loan
 * against this card.
 */
 public MembershipCard(int max) {
 maxOnLoan = max;
 } // End of constructor.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Java: Classes in Java Applications

14

Using the Java Application Programming Interface

/**
 * Accessor for the attribute noOnLoan.
 * @return noOnLoan The value of the attribute noOnLoan.
 */
 public int getNoOnLoan() {
 return noOnLoan;
 } // End of definition of getNoOnLoan.

 /**
 * Accessor for the attribute maxOnLoan.
 * @return maxOnLoan The value of the attribute maxOnLoan.
 */
 public int getMaxOnLoan() {
 return maxOnLoan;
 } // End of definition of getNoOnLoan.

} // End of class definition.

Most development environments for Java include a feature that runs the javadoc tool that is provided with
the javac compiler and other java tools in Java’s bin directory. When it is executed, the javadoc tool scans
the tags and generates a set of linked HTML files. A snapshot of part of the documentation for the
MembershipCard class is shown next.

Class MembershipCard
java.lang.Object

MembershipCard

public class MembershipCard extends java.lang.Object
The purpose of the class definition for the class Member is …
Version:

1.0, dated 29 October 2008.
Author:

David M. Etheridge.

Constructor Summary
MembershipCard(int max)

 This constructor is used to initalize the maxOnLoan attribute.

Method Summary
 int getMaxOnLoan()

 Accessor for the attribute maxOnLoan.

 int getNoOnLoan()

 Accessor for the attribute noOnLoan.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

15

Using the Java Application Programming Interface

Constructor Detail
MembershipCard
public MembershipCard(int max)

This constructor is used to initalize the maxOnLoan attribute.

Parameters: max - The maximum number of items permitted to be on loan against this card.

Method Detail
getMaxOnLoan
public int getMaxOnLoan()

Accessor for the attribute maxOnLoan.
Returns: maxOnLoan The value of the attribute maxOnLoan.

getNoOnLoan
public int getNoOnLoan()

Accessor for the attribute noOnLoan.
Returns: noOnLoan The value of the attribute noOnLoan.

The javadoc tool detects tags such as @aurhor, @version, @param and @return and generates the
relevant HTML file, as seen by comparing the source code and documentation for the MembershipCard

class shown above. Single-line comments are not detected by the javadoc tool; they are, however, an
important component of documentation, as is evident by their extensive use in examples presented in
previous chapters.

For further details about javadoc tags, the reader is referred to the section titled Tag Conventions in
http://java.sun.com/j2se/javadoc/writingdoccomments/#sourcefiles

Using the javadoc tool is straightforward and should always to be sued to produce documentation for all
classes written by Java developers as an integral part of the development process.

1.2 Documentation in the Java Application Programming Interface

The opening page of the version of the API (stored on the author’s computer at the time of writing) is
shown in the next screen shot.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

16

Using the Java Application Programming Interface

Figure 1.5 The Java API

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Java: Classes in Java Applications

17

Using the Java Application Programming Interface

Part of the section for the String class is shown below.

java.lang

Class String
java.lang.Object

java.lang.String

All Implemented Interfaces:
Serializable, CharSequence, Comparable<String>

public final class String extends Object
implements Serializable, Comparable<String>, CharSequence

Constructor Summary
String()

 Initializes a newly created String object so that it represents an empty
character sequence.

String(byte[] bytes)

 Constructs a new String by decoding the specified array of bytes using
the platform's default charset.

… other constructors follow but are not shown

Method Summary
 char charAt(int index)

 Returns the char value at the specified index.

 int codePointAt(int index)

 Returns the character (Unicode code point) at the specified index.

 int codePointBefore(int index)

 Returns the character (Unicode code point) before the specified index.

 int codePointCount(int beginIndex, int endIndex)

 Returns the number of Unicode code points in the specified text range of this

String.

 int compareTo(String anotherString)

 Compares two strings lexicographically.

 int compareToIgnoreCase(String str)

 Compares two strings lexicographically, ignoring case differences.

String concat(String str)

 Concatenates the specified string to the end of this string.

... other methods follow but are not shown

Clicking on any of the constructors or methods reveals the details about that member. For example,
clicking on the compareTo method of the String class displays the following page.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

18

Using the Java Application Programming Interface

compareTo
public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each

character in the strings. The character sequence represented by this String object is compared

lexicographically to the character sequence represented by the argument string. The result is a

negative integer if this String object lexicographically precedes the argument string. The result

is a positive integer if this String object lexicographically follows the argument string. The

result is zero if the strings are equal; compareTo returns 0 exactly when the equals(Object)

method would return true.

Specified by:
compareTo in interface Comparable<String>

Parameters:
anotherString - the String to be compared.

Returns:
the value 0 if the argument string is equal to this string; a value less than 0 if this string is

lexicographically less than the string argument; and a value greater than 0 if this string is
lexicographically greater than the string argument.

The principal purpose of the illustrations in this section is to show that the documentation provided by the
API is organised in an identical fashion to that produced by the javadoc tool for developer-written classes,
as exemplified in Section 1.1.1. This gives rise to consistently-structured documentation for the infinitude
of Java classes used and written by the worldwide Java development community.

While the examples in Section 1.1.1 are relatively straightforward in terms of the logic of Java source
code, they are included to illustrate the essential principles and purpose of providing single-line and block
documentation as an integral part of writing class definitions.

The next chapter returns to the Java language itself and explores how flow of control is managed in blocks
of Java source code.

http://bookboon.com/

